Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[dichloridoiron(II)]-μ-4,4"bis(benzimidazol-1-yl)-1,1':4',1"terphenyl]

Hui Li,* Zhuangwei Wei, Qiaojuan Gong and Qiuping Han

Department of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China Correspondence e-mail: lihuiwf@yahoo.com

concepting energy and ene

Received 18 January 2010; accepted 22 January 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.117; data-to-parameter ratio = 12.5.

In the title coordination polymer, $[FeCl_2(C_{32}H_{22}N_4)]_n$, the Fe^{II} atom lies on a crystallographic twofold axis and a distorted FeCl₂N₂ tetrahedral coordination geometry arises. The complete ligand is generated by crystallographic twofold symmetry, resulting in an infinite one-dimensional architecture along [101].

Related literature

For background to benzimidazoles as ligands, see: Vijayan *et al.* (2006).

Experimental

Crystal data [FeCl₂(C₃₂H₂₂N₄)]

 $M_r = 589.29$

Monoclinic, $C2/c$	Z = 4
a = 14.519 (3) Å	Mo $K\alpha$ radiation
b = 14.303 (3) Å	$\mu = 0.84 \text{ mm}^{-1}$
c = 12.461 (3) Å	T = 293 K
$\beta = 101.94 \ (3)^{\circ}$	$0.20 \times 0.18 \times 0.15 \text{ mm}$
$V = 2531.6 (9) \text{ Å}^3$	
Data collection	
Rigaku Saturn CCD area-detector	9515 measured reflections
Absorption correction: multi-scan	1960 reflections with $L > 2\sigma(I)$
(<i>CrvstalClear</i> : Rigaku/MSC.	$R_{\rm int} = 0.052$
2005)	int
$T_{\min} = 0.846, \ T_{\max} = 0.882$	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.049$	177 parameters
$wR(F^2) = 0.117$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
2218 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

Table 1 Selected bond lengths (Å)

Fe1-N1	2.076 (2)	Fe1-Cl1	2.2489 (10)

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the College Research Program of Yuncheng University [2008114] for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5310).

References

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vijayan, N., Bhagavannarayana, G., Balamurugan, N., Babu, R. R., Maurya, K. K., Gopalakrishnan, R. & Ramasamy, P. (2006). J. Cryst. Growth, 293, 318–323. supplementary materials

Acta Cryst. (2010). E66, m267 [doi:10.1107/S1600536810002837]

catena-Poly[[dichloridoiron(II)]-//-4,4"-bis(benzimidazol-1-yl)-1,1':4',1"-terphenyl]

H. Li, Z. Wei, Q. Gong and Q. Han

Comment

Benzimidazole has been well used in crystal engineering, and a large number of benzimidazole-containing flexible ligands have been extensively studied. However, to our knowledge, the research on benzoimidazole ligands bearing rigid spacers is still less developed.

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic space group C2/c. The geometry of the Fe^{II} ion is surrounded by two benzimidazole rings of distinct L ligands and two chlorine anions, which illustrates a slightly distorted tetrahedral coordination environment (Fig. 1). Notably, as shown in Fig. 2, the four-coordinated Fe^{II} center is bridged by the linear ligand L to form an infinite one-dimensional architecture along crystallographic [101] axis.

Experimental

A mixture of $(CH_3)_2$ CHOH and CHCl₃ (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of 4,4'-Bis(benzimidazol-1-yl)terphenyl (L, 0.06 mmol) in CHCl₃ (6 ml). Then a solution of FeCl₂ (0.02 mmol) in (CH₃)₂CHOH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After *ca* three weeks, yellow blocks of (I) appeared at the boundary. Yield: ~10% (based on L).

Refinement

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}$.

The N-bound H atoms were located in a difference map and their positions were freely refined with $U_{iso}(H) = 1.2U_{eq}(N)$.

Figures

Fig. 1. A fragment of a polymeric chain in (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

catena-Poly[[dichloridoiron(II)]-µ- 4,4"-bis(benzimidazol-1-yl)-1,1':4',1"-terphenyl]

Crystal data [FeCl₂(C₃₂H₂₂N₄)]

F(000) = 1208

$M_r = 589.29$
Monoclinic, C2/c
Hall symbol: -C 2yc
<i>a</i> = 14.519 (3) Å
<i>b</i> = 14.303 (3) Å
c = 12.461 (3) Å
$\beta = 101.94 (3)^{\circ}$
$V = 2531.6 (9) \text{ Å}^3$
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer	2218 independent reflections
Radiation source: fine-focus sealed tube	1960 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.052$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
ω scans	$h = -17 \rightarrow 16$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$k = -16 \rightarrow 15$
$T_{\min} = 0.846, \ T_{\max} = 0.882$	$l = -14 \rightarrow 14$
9515 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.117$	H-atom parameters constrained
<i>S</i> = 1.12	$w = 1/[\sigma^2(F_o^2) + (0.0565P)^2 + 2.1075P]$ where $P = (F_o^2 + 2F_c^2)/3$
2218 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
177 parameters	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

 $D_{\rm x} = 1.546 {\rm Mg m}^{-3}$

 $0.20\times0.18\times0.15~mm$

 $\theta = 2.0-27.9^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$ T = 293 KBlock, yellow

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2574 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe1	0.0000	1.12084 (4)	0.7500	0.0240 (2)
C11	0.02255 (6)	1.20219 (6)	0.90773 (8)	0.0423 (3)
N2	0.20786 (16)	0.96985 (16)	0.63670 (19)	0.0186 (6)
N1	0.10013 (17)	1.02547 (17)	0.72169 (19)	0.0207 (6)
C15	0.4708 (2)	0.8783 (2)	0.2868 (2)	0.0176 (6)
H15	0.4516	0.8216	0.3115	0.021*
C11	0.3788 (2)	0.9625 (2)	0.4047 (2)	0.0181 (6)
C14	0.4398 (2)	0.9609 (2)	0.3250 (2)	0.0185 (6)
C8	0.2661 (2)	0.9662 (2)	0.5587 (2)	0.0187 (6)
C13	0.3223 (2)	1.0412 (2)	0.5485 (2)	0.0183 (6)
H13	0.3231	1.0931	0.5937	0.022*
C3	0.1067 (2)	0.8921 (2)	0.8545 (2)	0.0213 (7)
Н3	0.0598	0.9141	0.8887	0.026*
C10	0.3213 (2)	0.8878 (2)	0.4174 (3)	0.0228 (7)
H10	0.3212	0.8351	0.3736	0.027*
C1	0.1466 (2)	1.0385 (2)	0.6442 (2)	0.0203 (7)
H1	0.1381	1.0905	0.5984	0.024*
C9	0.2649 (2)	0.8892 (2)	0.4924 (3)	0.0233 (7)
Н9	0.2261	0.8387	0.4986	0.028*
C16	0.4710 (2)	1.0437 (2)	0.2859 (2)	0.0199 (6)
H16	0.4514	1.1005	0.3098	0.024*
C7	0.2006 (2)	0.9061 (2)	0.7177 (2)	0.0171 (6)
C12	0.3767 (2)	1.0395 (2)	0.4721 (2)	0.0184 (6)
H12	0.4137	1.0913	0.4647	0.022*
C2	0.1330 (2)	0.9411 (2)	0.7698 (2)	0.0177 (6)
C5	0.2242 (2)	0.7782 (2)	0.8350 (2)	0.0245 (7)
Н5	0.2559	0.7235	0.8605	0.029*
C6	0.2490 (2)	0.8247 (2)	0.7494 (2)	0.0212 (7)
Н6	0.2957	0.8027	0.7149	0.025*
C4	0.1526 (2)	0.8102 (2)	0.8854 (2)	0.0235 (7)
H4	0.1360	0.7750	0.9412	0.028*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

Fe1 $0.0229 (4)$ $0.0202 (4)$ $0.0323 (4)$ 0.000 $0.0134 (3)$ 0.000 C11 $0.0413 (6)$ $0.0368 (5)$ $0.0522 (6)$ $-0.0083 (4)$ $0.0174 (5)$ -0.0199	
C_{11} 0.0413 (6) 0.0368 (5) 0.0522 (6) -0.0083 (4) 0.0174 (5) -0.0199	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)
N2 0.0184 (13) 0.0194 (13) 0.0205 (13) 0.0010 (10) 0.0099 (10) 0.0014 ((10)
N1 0.0213 (14) 0.0203 (14) 0.0226 (13) 0.0014 (11) 0.0097 (11) 0.0035 ((11)
C15 0.0176 (16) 0.0168 (15) 0.0187 (14) -0.0018 (12) 0.0041 (12) 0.0017 ((12)
C11 0.0186 (16) 0.0178 (15) 0.0182 (14) 0.0007 (12) 0.0043 (12) 0.0020 ((12)
C14 0.0170 (15) 0.0204 (16) 0.0185 (14) -0.0008 (12) 0.0047 (12) 0.0003 ((12)
C8 0.0172 (15) 0.0216 (16) 0.0192 (14) 0.0036 (12) 0.0082 (12) 0.0026 (12)	(12)
C13 0.0190 (16) 0.0155 (15) 0.0203 (15) 0.0014 (12) 0.0041 (12) -0.0030	(12)

supplementary materials

C3	0.0202 (16)	0.0266 (17)	0.0182 (15)	-0.0030 (13)	0.0066 (12)	-0.0023 (13)
C10	0.0272 (18)	0.0191 (17)	0.0253 (16)	-0.0050 (13)	0.0125 (14)	-0.0069 (13)
C1	0.0193 (16)	0.0190 (16)	0.0242 (15)	0.0009 (13)	0.0081 (13)	0.0044 (13)
C9	0.0243 (17)	0.0193 (16)	0.0281 (17)	-0.0046 (13)	0.0097 (14)	-0.0021 (13)
C16	0.0224 (16)	0.0167 (15)	0.0218 (15)	-0.0004 (12)	0.0074 (12)	-0.0023 (12)
C7	0.0199 (16)	0.0134 (14)	0.0189 (14)	-0.0024 (12)	0.0057 (12)	0.0013 (12)
C12	0.0183 (16)	0.0171 (15)	0.0200 (14)	-0.0018 (12)	0.0044 (12)	0.0004 (12)
C2	0.0159 (15)	0.0170 (15)	0.0211 (15)	0.0003 (12)	0.0058 (12)	-0.0011 (12)
C5	0.0288 (18)	0.0147 (16)	0.0284 (17)	0.0007 (13)	0.0018 (14)	0.0025 (13)
C6	0.0203 (16)	0.0185 (16)	0.0257 (16)	0.0001 (13)	0.0066 (13)	-0.0037 (13)
C4	0.0315 (18)	0.0207 (16)	0.0181 (15)	-0.0060 (13)	0.0048 (13)	0.0024 (13)

Geometric parameters (Å, °)

Fe1—N1 ⁱ	2.076 (2)	C13—H13	0.9300
Fe1—N1	2.076 (2)	C3—C4	1.362 (4)
Fe1—Cl1 ⁱ	2.2489 (10)	C3—C2	1.384 (4)
Fe1—Cl1	2.2489 (10)	С3—Н3	0.9300
N2—C1	1.342 (4)	С10—С9	1.364 (4)
N2—C7	1.381 (4)	C10—H10	0.9300
N2—C8	1.415 (4)	C1—H1	0.9300
N1—C1	1.300 (4)	С9—Н9	0.9300
N1—C2	1.388 (4)	C16—C16 ⁱⁱ	1.349 (6)
C15—C15 ⁱⁱ	1.373 (6)	C16—H16	0.9300
C15—C14	1.383 (4)	C7—C6	1.375 (4)
С15—Н15	0.9300	C7—C2	1.379 (4)
C11—C10	1.386 (4)	C12—H12	0.9300
C11—C12	1.389 (4)	C5—C6	1.367 (4)
C11—C14	1.461 (4)	C5—C4	1.398 (4)
C14—C16	1.392 (4)	С5—Н5	0.9300
C8—C13	1.368 (4)	С6—Н6	0.9300
C8—C9	1.375 (4)	C4—H4	0.9300
C13—C12	1.358 (4)		
N1 ⁱ —Fe1—N1	97.86 (13)	C9—C10—C11	121.9 (3)
N1 ⁱ —Fe1—Cl1 ⁱ	120.53 (7)	С9—С10—Н10	119.1
N1—Fe1—Cl1 ⁱ	99.90 (7)	C11-C10-H10	119.1
N1 ⁱ —Fe1—Cl1	99.90 (7)	N1—C1—N2	113.6 (3)
N1—Fe1—Cl1	120.53 (7)	N1—C1—H1	123.2
Cl1 ⁱ —Fe1—Cl1	117.69 (6)	N2—C1—H1	123.2
C1—N2—C7	106.3 (2)	C10—C9—C8	119.3 (3)
C1—N2—C8	125.0 (2)	С10—С9—Н9	120.4
C7—N2—C8	128.6 (2)	С8—С9—Н9	120.4
C1—N1—C2	105.1 (2)	C16 ⁱⁱ —C16—C14	121.72 (17)
C1—N1—Fe1	121.4 (2)	C16 ⁱⁱ —C16—H16	119.1
C2-N1-Fe1	133.50 (19)	C14—C16—H16	119.1
C15 ⁱⁱ —C15—C14	121.33 (17)	C6—C7—C2	122.9 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15 ⁱⁱ —C15—H15	119.3	C6—C7—N2	131.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—H15	119.3	C2—C7—N2	105.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12	117.0 (3)	C13—C12—C11	121.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C14	122.0 (3)	C13—C12—H12	119.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C14	121.0 (3)	C11—C12—H12	119.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C15—C14—C16	117.0 (3)	C7—C2—C3	120.7 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C15—C14—C11	122.2 (3)	C7—C2—N1	109.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C14—C11	120.8 (3)	C3—C2—N1	130.2 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C13—C8—C9	120.3 (3)	C6—C5—C4	122.1 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C13—C8—N2	119.2 (3)	С6—С5—Н5	118.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C8—N2	120.5 (3)	С4—С5—Н5	118.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C13—C8	119.7 (3)	C5—C6—C7	115.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C13—H13	120.1	С5—С6—Н6	122.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C13—H13	120.1	С7—С6—Н6	122.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—C2	117.1 (3)	C3—C4—C5	121.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	121.5	С3—С4—Н4	119.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	121.5	С5—С4—Н4	119.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 ⁱ —Fe1—N1—C1	139.0 (3)	N2-C8-C9-C10	179.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1 ⁱ —Fe1—N1—C1	16.0 (2)	C15—C14—C16—C16 ⁱⁱ	-0.1 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1—Fe1—N1—C1	-114.6 (2)	C11—C14—C16—C16 ⁱⁱ	178.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 ⁱ —Fe1—N1—C2	-40.2 (2)	C1—N2—C7—C6	-177.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1 ⁱ —Fe1—N1—C2	-163.2 (3)	C8—N2—C7—C6	3.3 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1—Fe1—N1—C2	66.2 (3)	C1—N2—C7—C2	0.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15 ⁱⁱ —C15—C14—C16	-0.3 (5)	C8—N2—C7—C2	-178.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15 ⁱⁱ —C15—C14—C11	-179.0 (3)	C8—C13—C12—C11	-1.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C14-C15	-23.9 (4)	C10-C11-C12-C13	1.1 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-C11-C14-C15	155.5 (3)	C14—C11—C12—C13	-178.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C14-C16	157.5 (3)	C6—C7—C2—C3	-3.6 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C14—C16	-23.2 (4)	N2—C7—C2—C3	178.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N2—C8—C13	53.0 (4)	C6—C7—C2—N1	177.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N2—C8—C13	-127.8 (3)	N2-C7-C2-N1	-0.5 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N2—C8—C9	-125.7 (3)	C4—C3—C2—C7	2.0 (4)
C9—C8—C13—C120.3 (4)C1—N1—C2—C70.4 (3)N2—C8—C13—C12 -178.4 (3)Fe1—N1—C2—C7179.6 (2)C12—C11—C10—C90.1 (5)C1—N1—C2—C3 -178.3 (3)C14—C11—C10—C9179.5 (3)Fe1—N1—C2—C31.0 (5)C2—N1—C1—N2 -0.1 (3)C4—C5—C6—C71.4 (4)Fe1—N1—C1—N2 -179.48 (19)C2—C7—C6—C51.8 (4)C7—N2—C1—N1 -0.2 (3)N2—C7—C6—C51.79.3 (3)C8—N2—C1—N1179.1 (3)C2—C3—C4—C51.1 (4)C11—C10—C9—C8 -1.2 (5)C6—C5—C4—C3 -2.9 (5)C13—C8—C9—C100.9 (5)C1C1	C7—N2—C8—C9	53.5 (4)	C4—C3—C2—N1	-179.4 (3)
N2—C8—C13—C12 $-178.4 (3)$ Fe1—N1—C2—C7 $179.6 (2)$ C12—C11—C10—C90.1 (5)C1—N1—C2—C3 $-178.3 (3)$ C14—C11—C10—C9179.5 (3)Fe1—N1—C2—C3 $1.0 (5)$ C2—N1—C1—N2 $-0.1 (3)$ C4—C5—C6—C7 $1.4 (4)$ Fe1—N1—C1—N2 $-179.48 (19)$ C2—C7—C6—C5 $1.8 (4)$ C7—N2—C1—N1 $-0.2 (3)$ N2—C7—C6—C5 $1.79.3 (3)$ C8—N2—C1—N1 $179.1 (3)$ C2—C3—C4—C5 $1.1 (4)$ C11—C10—C9—C8 $-1.2 (5)$ C6—C5—C4—C3 $-2.9 (5)$ C13—C8—C9—C100.9 (5) $0.9 (5)$ $0.1 (5)$	C9—C8—C13—C12	0.3 (4)	C1—N1—C2—C7	0.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2-C8-C13-C12	-178.4 (3)	Fe1—N1—C2—C7	179.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-C11-C10-C9	0.1 (5)	C1—N1—C2—C3	-178.3 (3)
C2-N1-C1-N2 -0.1 (3)C4-C5-C6-C7 1.4 (4)Fe1-N1-C1-N2 -179.48 (19)C2-C7-C6-C5 1.8 (4)C7-N2-C1-N1 -0.2 (3)N2-C7-C6-C5 179.3 (3)C8-N2-C1-N1 179.1 (3)C2-C3-C4-C5 1.1 (4)C11-C10-C9-C8 -1.2 (5)C6-C5-C4-C3 -2.9 (5)C13-C8-C9-C10 0.9 (5) 0.9 (5) 0.9 (5)	C14—C11—C10—C9	179.5 (3)	Fe1—N1—C2—C3	1.0 (5)
Fe1—N1—C1—N2 $-179.48 (19)$ C2—C7—C6—C5 $1.8 (4)$ C7—N2—C1—N1 $-0.2 (3)$ N2—C7—C6—C5 $179.3 (3)$ C8—N2—C1—N1 $179.1 (3)$ C2—C3—C4—C5 $1.1 (4)$ C11—C10—C9—C8 $-1.2 (5)$ C6—C5—C4—C3 $-2.9 (5)$ C13—C8—C9—C10 $0.9 (5)$ $0.9 (5)$ $0.9 (5)$	C2—N1—C1—N2	-0.1 (3)	C4—C5—C6—C7	1.4 (4)
C7-N2-C1-N1 -0.2 (3) N2-C7-C6-C5 179.3 (3) C8-N2-C1-N1 179.1 (3) C2-C3-C4-C5 1.1 (4) C11-C10-C9-C8 -1.2 (5) C6-C5-C4-C3 -2.9 (5) C13-C8-C9-C10 0.9 (5) 0.9 (5) 0.9 (5)	Fe1—N1—C1—N2	-179.48 (19)	C2—C7—C6—C5	1.8 (4)
C8—N2—C1—N1 179.1 (3) C2—C3—C4—C5 1.1 (4) C11—C10—C9—C8 -1.2 (5) C6—C5—C4—C3 -2.9 (5) C13—C8—C9—C10 0.9 (5)	C7—N2—C1—N1	-0.2 (3)	N2—C7—C6—C5	179.3 (3)
C11—C10—C9—C8 -1.2 (5) C6—C5—C4—C3 -2.9 (5) C13—C8—C9—C10 0.9 (5)	C8—N2—C1—N1	179.1 (3)	C2—C3—C4—C5	1.1 (4)
C13—C8—C9—C10 0.9 (5)	C11—C10—C9—C8	-1.2 (5)	C6—C5—C4—C3	-2.9 (5)
	C13—C8—C9—C10	0.9 (5)		

Symmetry codes: (i) -x, y, -z+3/2; (ii) -x+1, y, -z+1/2.

Fig. 1